

Case Study

CLOUD AUDIT & INFRASTRUCTURE OPTIMIZATION FOR A LEADING DATA CENTER PROVIDER

CASE AT A GLANCE

INDUSTRY

- > Energy & Utilities
- > Digital Infrastructure
- > Smart Grid Systems

SERVICES OFFERED

- > Infrastructure Optimization
- > Cloud Architecture Audit
- > Observability Strategy
- > Operational Governance

DURATION

Months

OVERVIEW

A leading data center provider supporting smart grid systems was facing critical performance issues, including long ticket resolution times, poor resource allocation, and limited visibility into system health. We conducted a full-stack infrastructure audit, redesigned their monitoring and deployment pipelines, and implemented governance & scaling practices. The result: faster resolution, improved efficiency, fewer critical incidents, and a more resilient, scalable architecture.

IMPACT HIGHLIGHTS

60% Faster Resolution Times

30% Boost in Operational Efficiency

37% Drop in Critical Incidents

Deployment Stability Improved

Predictive Scaling Enabled

Standardized Network
Calibration

Strong Governance and Audit Trails

Smarter Incident Response

INNOVATION

The solution combined observability-led infrastructure with GitOps-powered governance, creating a scalable & self-healing operational model aligned with future smart grid demands.

I. THE PROBLEM STATEMENT

The client was operating a large-scale infrastructure across multiple regions, but faced significant roadblocks to operational effectiveness:

These issues not only impacted service quality but also posed serious risks to the client's long-term scalability and governance posture.

II. SOLUTION WE PROVIDED

We deployed a four-phase transformation framework designed to balance immediate relief with long-term resilience:

Assessment & Discovery

- > Reviewed architecture, deployment workflows, resource allocation, monitoring setup
- > Identified system bottlenecks, tooling overlaps, and governance gaps

Technical Analysis

- > Conducted deep-dive analysis of VMs, messaging queues, storage, APIs, & network paths
- > Mapped visibility gaps and incident response patterns

Phased Recommendations

- > Proposed short-term fixes, mid-term optimizations, and long-term architectural improvements
- > Prioritized actions based on business impact and operational risk

Implementation & Change Enablement

- > Rolled out observability stack (Prometheus + ELK)
- > Introduced GitOps for deployments and versioning
- > Reworked VM scheduling and anti-affinity rules
- > Streamlined incident triage, monitoring, and alerting
- > Standardized calibration across all regional nodes

INSIDE THE ENGAGEMENT

III. THE OUTCOME

1 Incident Resolution 60% faster resolution via automated ticket workflows and triaged alerting

2 Efficiency Gains 30% improvement in throughput due to optimal VM allocation and reduced contention

3 System Stability 37% drop in high-severity incidents with proactive monitoring and synthetic checks

4 Deployment Reliability CI/CD pipelines, GitOps workflows, and schema migration automation reduced errors and improved consistency

Predictive Scaling

Capacity planning powered by latency and usage models improved infrastructure agility

Git-based deployment and access logs ensured traceability, rollback safety, and better compliance management

7 Cross-Region Performance Standardised calibration improved operational continuity across smart grid infrastructure nodes

IV. OUR INNOVATION

The innovation wasn't just technical — it was strategic.

We introduced GitOps as the backbone for deployment and governance, which enabled real-time audit trails and rollback capability. Observability was treated as a core architecture pillar, not a monitoring add-on — integrating Prometheus, ELK stack, and synthetic monitoring to ensure proactive incident detection.

Predictive infrastructure scaling based on real-world usage patterns transformed the way the client plans capacity, budget, and expansion. These innovations, implemented incrementally, provided stability today and scalability for tomorrow.

GET IN TOUCH WITH US

New Delhi | Noida | Mumbai | Ahmedabad | Toronto | Dubai | Canada | Manchester

